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Abstract

A method combining features of front-tracking methods and fixed-domain methods is presented to model dendritic
solidification of pure materials. To explicitly track the interface growth and shape of the solidifying crystals, a front-
tracking approach based on the level set method is implemented. To easily model the heat and momentum transport,
a fixed-domain method is implemented assuming a diffused freezing front where the liquid fraction is defined in terms of
the level set function. The fixed-domain approach, by avoiding the explicit application of essential boundary conditions
on the freezing front, leads to an energy conserving methodology that is not sensitive to the mesh size. To compute the
freezing front morphology, an extended Stefan condition is considered. Applications to several classical Stefan prob-
lems and two- and three-dimensional crystal growth of pure materials in an undercooled melt including the effects
of melt flow are considered. The computed results agree very well with available analytical solutions as well as with
results obtained using front-tracking techniques and the phase-field method.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Simulation of solidification and crystal growth processes has been of interest for a number of years not
only because of its scientific value in understanding pattern formation in nature but also because of its
importance in many technological applications. The classical Stefan problem with a sharp interface is well
accepted for modelling the solidification of pure materials. Front-tracking techniques have been widely
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used for such sharp front solidification processes. Recently, these techniques have been used successfully to
reproduce the complex dendritic structure in crystal growth in undercooled melts including effects such as
liquid trapping, tip-splitting, side branching and coarsening [1-3]. Successful three-dimensional front-
tracking implementations including the effects of melt flow have been presented [4]. The advantages of
front-tracking methodologies lie in their ability to directly enforce the freezing interface temperature
(Gibbs—-Thomson) relation and energy balance (Stefan condition). Unfortunately, many of the current
implementations of these conditions do not allow global energy conservation even though they may satisfy
the Stefan condition pointwise. In addition, such formulations appear to result in high sensitivity to mesh
size and orientation.

During the last two decades, significant progress has been made in the simulation of microstructure evo-
lution in solidification processes using phase-field methods [5-7]. These approaches, by considering a
diffused-interface and a fixed-grid, avoid the need for applying temperature boundary conditions on the
moving interface. A review of recent progress in phase-field methods as applied to solidification processes
is given in [5]. The basic idea of the phase-field method is to employ a phase-field variable @ that varies
smoothly from zero to unity between the two phases over the diffused-interface region, which has a small
but numerically resolvable thickness. The phase-field variable serves to distribute the interfacial forces over
the diffused freezing region. It is governed by a phase-field control equation derived from the thermody-
namics of phase transition [5]. Important physical mechanisms, such as curvature, anisotropy and kinetics
effects, are implicitly incorporated in the phase-field control equation. This leads to many computational
advantages. For example, one does not need to compute interfacial geometric quantities such as interface
curvature and outward normal vector.

The phase-field method can be shown to reduce to the standard sharp interface formulation in the limit
of vanishing interface thickness [8]. The quality of the solution deteriorates with increasing interface thick-
ness. This necessitates the grid spacing to be of the order of or smaller than the interfacial thickness. It has
been shown that the interface thickness must be smaller than the capillary length for the solution to con-
verge to the sharp interface limit [9,10]. Improved asymptotic coefficients have been derived for the thin-
interface limit of the phase-field equations which facilitate the use of a coarser grid [11]. Phase-field analysis
for unequal solid/liquid diffusivities leads to computational models which require finer grid resolution and
hence lead to slower computational performance [12]. One of the drawbacks of the phase-field method is
the significant computational effort required, especially when investigating dendritic growth in the presence
of convection and multiple array dendritic growth. However, the techniques of adaptive gridding and par-
allel computing have resulted in assuaging this drawback to some extent [13,14]. Another drawback of the
phase-field methods is related to the large number of parameters involved in the solution of the evolution
equations. These parameters are difficult to determine for accurate physical crystal growth simulation of
real world materials.

The level set method is an alternative method to handle the sharp interface front directly and to avoid
the asymptotic analysis needed in phase-field models [15]. It has been shown to be a promising mathemat-
ical tool for tracking the interface with low computational cost. It is widely used in various applications
such as two-phase flow, crack propagation, computer vision and image processing. In this method, inter-
facial geometric quantities such as curvature and outward normal can be easily calculated using the level set
variable ¢. The method was first applied to Stefan problems in [16]. Level set calculations for dendritic
growth were reported in [17]. In these works [16,17], the heat flux at nodes near the interface is interpolated
in order to calculate the interface velocity via the Stefan condition. During this interpolation, the temper-
ature on the interface is fixed at the equilibrium temperature defined from the Gibbs-Thomson relation.
However, like front-tracking methods, the direct application of temperature boundary conditions on the
interface and the computation of heat fluxes from the temperature nodal values usually lead to energy
conservation issues associated with the discretization error [18]. This may result in large variation of the
computed crystal shapes if meshes of different sizes and orientations are used.
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The method presented here combines features of front-tracking and fixed-domain methods. The level set
method is implemented to allow a direct calculation of the growth and shape of the solidifying crystals. An
energy conserving implementation of the level set method is used without the need to apply the temperature
boundary condition explicitly at the freezing interface. To easily model the heat and momentum transport,
a fixed-domain method is implemented assuming a diffused freezing front where the liquid fraction is de-
fined in terms of the level set function. The fixed-domain approach, by avoiding the need to explicitly apply
essential boundary conditions on the freezing front, leads to an energy conserving methodology that is not
sensitive to the mesh size or orientation. The present implementation is similar to that of the phase-field
method, except that the ‘phase-field variable’ @ is no longer governed by the phase-field control equation
but is defined using the level set (signed distance) variable ¢. The freezing front morphology is computed as
a post-processing operation using an extended Stefan condition.

This work provides a new approach for modelling dendritic solidification using a fixed finite element
grid. It avoids the need for adaptive or moving griding while at the same time provides an explicit and accu-
rate tracking of the interface front. It allows a rather simple integration of level set techniques with stabi-
lized volume-averaged based finite element techniques for thermal and momentum transport. The interface
conditions are accurately enforced on an implicit manner while maintaining energy conservation for the
overall system. The melt flow is modelled using equal-order velocity—pressure interpolation that has been
shown to lead to better convergence rates and accuracy [19] than the fractional step method commonly used
in dendritic solidification models. The present methodology will be shown to be computationally efficient
and accurate for both two- and three-dimensional problems. We will demonstrate that the methodology
performs very well in benchmark dendritic growth problems including growth under low-undercooling con-
ditions for which other numerical approaches do not work [20].

The plan of the paper is as follows. Section 2 introduces the sharp interface model including the effects of
fluid flow. Section 3 discusses a diffused-interface approximation of the Stefan problem. The level set for-
mulation is briefly reviewed in Section 4. Section 5 provides details on the implementation of the method
including modelling of the underlying transport phenomena. The overall methodology of the energy con-
serving scheme is discussed in Section 6. Section 7 presents several examples and compares their results with
those obtained from analytical and other numerical approaches. Finally, Section 8 provides a summary of
the work.

2. Definition of the Stefan problem

Let us consider the classical Stefan problem with a sharp interface including the effects of melt flow. The
liquid phase of a pure material at initial temperature Tj(x, y) is assumed to occupy a region Qé This liquid
phase is either alone (Qf) =) or in an unstable equilibrium with the neighboring solid phase
Q) (Q= QLU Q) at initial temperature T%(x,y). In the latter case, the regions Q) and @ are separated
by the solid/liquid interface I'y. The superscripts ¢ and s are used here to denote quantities corresponding
to the liquid and solid phases, respectively, whereas the subscript 0 is used to denote quantities at time ¢ = 0.
We assume that solidification starts at time 7 = 0. The domains Q° and ©° are time-dependent and the solid—
liquid interface I' is moving with normal velocity V. The normal n to the interface I" is defined as pointing
away from the solid region ©Q°. The domain Q = Q°U Q* containing these two phases and its external
boundary 0Q are assumed constant (time-independent). Fig. 1 presents a typical schematic of the problems
considered.

We assume constant thermo-physical and transport properties, including viscosity y, density p, thermal
conductivity k, heat capacity ¢ and latent heat L. The melt flow is assumed to be a laminar flow caused by
temperature-induced density variations (Boussinesq flow). Following standard notation, the governing
equations in the presence of fluid flow are given as follows:
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Fig. 1. Schematic of the sharp interface model of the solidification of a pure material (Stefan problem). The heat fluxes ¢, and ¢; are
defined on the freezing front.
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where v is the melt flow velocity and b is the buoyancy body force.
The temperature on the interface I' denoted as T is equal to the equilibrium temperature 7™, This equi-
librium temperature is given from the Gibbs—Thomson relation as follows:

T =Tn+ &+ evV, (5)

where T}, is the pure material melting temperature, x is the curvature of the freezing interface, and ¢, and &y
are the curvature and kinetic undercooling coefficients, respectively.

The motion of the interface velocity V' is dictated by the classical Stefan equation (energy balance at the
freezing front) as follows:

oLV = q] = q, — q;, (6)

where [¢g] denotes the jump of the heat flux ¢ = kVT - n at the freezing front.
To describe the interface, we construct a field ¢ such that at any time ¢, the interface is equal to the zero
level set of ¢, i.e.,

Irt)={xe€Q: ¢(x,t) =0}. (7)
Initially, ¢ is set equal to the signed distance function from the interface I'
+d(x,0), x€Q,
$(x,0) = {0, x € I, (8)
—d(x,0), xeQ,
where d(x,0) is the normal distance of a point x from the interface.
The idea behind the level set method is to move ¢ with the correct speed V" at the interface which is ex-

tracted from Eq. (6). The interface position is thus implicitly stored in ¢. The equation of motion governing
¢ is given as follows:

¢, + VIV =0. 9)
This equation moves ¢ with correct speed at the interface so that I will always be equal to the zero level set
of ¢ [15].

With the above introduction of the level set function, we will re-write the Stefan condition for the clas-
sical Stefan problem as follows:
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pLV =1lql, ¢,= lim g, ¢, = lim g, (10)
$—0 $—0"

where the notation 0" and 0~ is used here for notational simplification to denote the values of ¢ as we
approach the freezing front from the solid and liquid sides, respectively.

Egs. (1)-(5) and (10) together with appropriate initial temperature and velocity conditions, boundary
thermal conditions on I" and the no-slip condition in all solid boundaries completely define what we here
refer to as the Stefan problem. Note that in the literature the classical Stefan problem does not include melt
flow. These effects have been included herein to allow us to study their importance in crystal growth of pure
materials in undercooled melts.

3. Introducing the extended Stefan problem

Many of the difficulties in the implementation of the Stefan problem defined earlier are related to the
application of the essential boundary condition given in Eq. (5). Front-tracking techniques attempt to apply
this condition directly to the moving front, often leading to schemes that are not energy conserving. On the
other hand, phase-field methods consider a diffused-interface model in an attempt to avoid a direct appli-
cation of this condition. However, phase-field models require proper parameter selection through an
asymptotic analysis in order to model the sharp interface solidification problem.

To take advantage of the front-tracking capability of the level set methods and of the ability of phase-
field methods to avoid directly applying Eq. (5), we introduce in this section the extended Stefan problem
that uses features of both methods. Fig. 2 shows a schematic of the new problem.

Assumption 1. We assume that solidification occurs in a diffused zone of width 2w that is symmetric
around ¢ = 0 (see Fig. 2). The half-width w is not related with the underlying physics of the solidification of
a pure material (which usually happens on a thickness of the order of atomic distances). In this work, the
half-width w is selected based on the size of the grid used in the discretization of the problem.

A diffused-interface model will be used in the solution of the energy and momentum equations. Follow-
ing ideas similar to those in diffused-interface models, let us define the function ®(x,¢) as follows:

1’ ¢(x’ t) >w,
&(x,t) =< 0, Plx,1) < —w, an
e L 0.5, p(x,1) € [—w, .

Since solidification occurs in a diffused-interface, following a volume-averaging approach as in [19], we can
write the energy equation (applicable in the whole domain Q) as follows:

or .
Ipi@ci+ p,(1 = D) -+ prery - VT = V- (KVT) = py[L+ (e, = e)(T = Tw)], (12)

where @ plays the role of the phase-field variable in phase-field models and k = k;® + k(1 — &). Similarly,
the volume-averaging momentum and continuity equations take the following forms:

Solid v Liquid

QF '

B 7

= Q'

Fig. 2. Schematic of the diffused-interface model of the solidification of a pure material (extended Stefan problem). The heat fluxes ¢
and ¢, are here defined at distances w from the actual sharp freezing front.
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where p = p,@ + py(1 — P), e, is the unit vector in the direction of gravity, g is the gravity constant and v
from now on denotes the volume-averaged velocity equal to ®@v, [19]. For simplicity of the model, we as-
sume that the solid/liquid densities and specific heats are the same but we allow for different conductivities.

The Kozeny—Carman approximation for the permeability K(®) has been used directly in Eq. (13) with Kj
denoting the permeability constant. Note that the governing conservation Egs. (12)—(14) are applicable in
the whole domain Q.

The transport equations for the extended Stefan problem are now defined from Eqs. (12)—(14) together
with appropriate initial temperature and velocity conditions, boundary thermal conditions on I" and the no-
slip condition. Note that these equations completely define the temperature and melt flow, but since they
are based on a volume-averaging formulation, they do not directly involve the motion of the interface zone.
The freezing front motion will be computed by the level set function as it will be discussed below.

To compute the front velocity V (velocity of the interface ¢ = 0) we cannot simply utilize Eq. (10), which
is based on the sharp front model. Instead, a modified energy balance is needed at the freezing zone as fol-
lows (see Fig. 2):

2o 1y li li 15
pewo = =pLV + (g —q), g, = lim g, ¢, = Jim g, (15)
where T is the average temperature within the diffused-interface, and ATy is the increase of T at the time
interval Ar. Also,

¢= 0.5<1 +plc’>cs, (16)

PsCs

and w",—w~ are defined following similar notation to that introduced earlier for Eq. (10). The term
2p,cwAT; on the left hand side of Eq. (15) is the energy change in the diffused-interface due to change
of temperature. Also note that the temperature on the zero level set denoted as 77 is conceptually different
from T, which is the average temperature within the diffused mushy zone. Since the temperature varies only
slightly within the thin interface, in this work we will use T; to approximate 7. The temperature 7y can be
easily computed from interpolating temperature to zero level set. However, in order to maintain the
generality of the formulation, we will maintain the notation T for the average temperature within the
diffused-interface.

The Gibbs-Thomson constraint 77 = T* with T~ given in Eq. (5) ensures that the interface temperature is
the equilibrium temperature at each instant. To explicitly enforce this constraint, various methods like a
penalty method or a Lagrange multiplier approach can be used. In this work, we take an alternative ap-
proach. Since the numerical simulation provides solutions only at discrete time levels, we ensure that the
interface temperature approaches the equilibrium temperature at these time levels.

Assumption 2. The mean interface temperature 77 in the freezing zone of width 2w is allowed to vary from
the equilibrium temperature 7" in such a way that

dr _
d—t]:—kN(TI—T*), (17)

where ky controls the rate with which Ty is designed to approach the desired equilibrium temperature.
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Assuming for example that the equilibrium temperature remains constant, integration of Eq. (17) leads
to the following:

Ty(t) — T* = (T1(0) — T*) exp(—knt). (18)

A relaxation time that controls how fast T approaches T can then be defined as © = 1/k. The relaxation
parameter 7 (or equivalently ky) is selected such that the interface reaches the desired equilibrium temper-
ature exponentially fast. An explicit integration of Eq. (17) over the time step At results in the following:

Tu(ty) — T* ~ (Ty(tuer) — T)(1 — kyAd), (19)

where the subscripts refer to time levels (r = 1, 2, ...). To make sure that the interface temperature stably
converges to the equilibrium temperature, we require the following:

2
1 —kyAt| <1 = At < —=21. (20)
ky
If we further require that 77 — T* does not change sign as it approaches zero (T* = T;), then At < 7. In our
algorithms, for a given At, we select ky = 1/At so that the condition Az < t is satisfied automatically. The
selection of Az will be discussed in Section 4.

Substitution of the constraint of Eq. (17) to Eq. (15) results in the following modified energy balance at
the freezing front:

2¢ - . .

4] +%kN(T* -T), g¢,= lim ¢, ¢, = limgq, (1)

Pp——w p—wt

g psL
where the heat fluxes ¢; and ¢, are computed at the boundaries of the control volume. Note that in the
above formulation, we use the average temperature 7 instead of the temperature 77 on the exact interface
(¢ = 0). Eq. (21) will be used as the energy balance at the diffused-interface and will allow us to accurately
compute the interface velocity V. Note that the above scheme is only to ensure that the interface temper-
ature relaxes to the equilibrium temperature in a given time step.

Remark 1. Note that Eq. (17) is not used directly in the analysis but it is embedded in the modified Stefan
condition given in Eq. (21). To compute a finite front velocity when ky — oo, Eq. (21) requires that 7y = T
in which case it is simplified to Eq. (10). It can be shown that, using Eq. (21), the numerical scheme for the
thermal problem of Eq. (12) leads to a discretized form of Eq. (17) thus weakly enforcing 77 = T™. The
choices w = Ax and ky = 1/At are sufficient to ensure satisfaction of both Egs. (5) and (10) and lead to an
accurate estimate of the front velocity V.

Remark 2. From a numerical point of view, the second term on the right hand side of Eq. (21) can be
thought of as the constraint 7* — 77 = 0 numerically enforced via a Lagrange multiplier method. A graph-
ical demonstration of an iterative process for the satisfaction of the constraint 7* — T; = 0 is given in Fig. 3.
In this figure, we assume that the temperature field away from the freezing zone remains the same during
iterations. Fig. 3 shows the iterative process as T approaches 7™ from below. This iterative procedure for
computing ¥ was not needed in the calculations reported in Section 7 and one step calculation was
sufficient to evaluate V" within the desired accuracy.

Q° Solid AT

e
?—“""“‘ ;.1 2

- q, ET‘, Qi

Fig. 3. Schematic of applying 77 = T* with the correction of Eq. (21).



L. Tan, N. Zabaras | Journal of Computational Physics 211 (2006) 36-63 43

Remark 3. The volume-averaging based energy Eq. (12) weakly accounts for the Stefan condition on the
freezing front by treating its contribution as a source term. This is typically the case with phase-field and
other diffused-interface models. The key element of the present formulation is that the phase variable @
(liquid volume fraction) is defined in terms of the level set function ¢ that is used to track the freezing front
explicitly. In classical volume-averaging models of solidification, @ is defined based on thermodynamic
update formulas using the computed temperature and equilibrium temperature at each point within the dif-
fused-interface. This last calculation is embedded in the calculation of ¢.

Remark 4. Curvature or kinetic undercooling effects play a significant role in solidification through the
Gibbs-Thomson relation Eq. (5). In the traditional phase-field method, an asymptotic analysis is required
to determine simulation parameters from the values of ¢. and ¢y used to model sharp front solidification.
The present level set method solves the extended Stefan problem directly without any need for an asymp-
totic analysis.

4. The level set method

In this work, we consider finite difference approximations for the level set function calculation and vol-
ume-averaging based stabilized finite element techniques for modelling the thermal and fluid flow problems
to capitalize on recent advances in the implementation of the level set method with finite difference tech-
niques. Only structured grids are considered in this work. For the finite element discretization, four-node
bilinear elements (in 2D) and eight-node brick trilinear elements (in 3D) are used.

Let ¢ be a signed distance variable (minimum distance to the interface between the two phases) satisfying
[Vé| = 1. Then the normal direction of the interface (pointing from the solid to the liquid) is calculated as
follows:

Vo

n Vol (22)

The curvature k of the interface in terms of ¢ is computed as discussed in [21]. Eq. (9) is solved for the
level set function in a narrow band near the interface. For this extension, the interface velocity is calculated
from the extended Stefan condition Eq. (21). Details of numerical schemes for the solution of Eq. (9) can be
found in [15,22].

After an update according to the level set Eq. (9), ¢ does not in general remain a signed distance func-
tion. It is thus necessary for re-initialization where the following equation is iterated until reaching steady-
state [16]:

b= (1 v, (23)

Vot

where ¢ is the initial level set value to be re-initialized. After ¢ reaches steady-state, |V¢| =1, i.e., ¢ is a
signed distance. The parameter ¢ in Eq. (23) takes some small value and is needed for the formulation to
remain well-posed as ¢ — 0. We use ¢ = 2Ax in our calculations [16]. The time step in this re-initialization
process is taken as Ar = Ax/5 and the number of iterations in the re-initialization process is taken to be
200AcEgr, where Acpr is the CFL condition coefficient ranging from 0 to 1. Note that the solid/liquid inter-
face is advanced within a time step with a distance Acrp Ax. Thus, based on the current re-initialization pro-
cess, the more distance the interface is advanced forward within a time step, the more iterations will be
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required to rebuild the signed distance. Unless it is otherwise stated, the CFL coefficient in all the examples
of Section 7 is selected as Acgp, = 0.3.

5. Energy conserving level set method

The level set method has been successfully applied to Stefan problems in [16,17,23]. In this work, we ap-
ply the level set method to the extended Stefan problem. Because the Dirichlet temperature boundary con-
dition is not applied directly on the interface, we can use energy conserving numerical schemes for the
implementation of the heat transfer problem [18]. While the front-tracking method in [3] and the level
set methods in [16,17,23] are all analytically energy conserving, when applying Dirichlet temperature
boundary condition on the interface, numerically they do not conserve energy. For the method presented
in this work (as well as in phase-field methods), energy is not only conserved analytically but also numer-
ically. This is the reason we refer to the present methodology as an ‘energy conserving level set method’.

5.1. Stability analysis: selection of the time step and ky

To simulate sharp-front solidification, one will theoretically be required to consider a very high value
for ky. Such a choice will of course lead to prohibitively small time steps via the stability condition
At < 1= 1/ky. In this work, our choice of Ar is based on the CFL condition for the level set function
calculation, i.e.,

Ax
Vmax ’

where Acpr is the CFL coefficient [21], and V., is the maximum interface nodal velocity.

The subsequent choice of &k is such that Ar < 1/ky to allow the interface temperature 77 to asymptot-
ically converge to the equilibrium temperature T~. As discussed earlier, our selection of k that satisfies the
above condition is ky = 1/At.

In summary, the scheme to select Af and ky is the following:

At < AcrL

(24)

1. Choose Acpr between 0 and 1. In the 3D diffusion crystal growth under low-undercooling conditions
example examined in Section 7.5.2, Acgy is selected as 0.1. In all other examples, we use Acpr = 0.3.
2. Select a time step size as Az = AcpL 725, where V7| is the maximum interface nodal velocity at the pre-
vious time level. .
. Select ky = 1/At.
. Calculate the interface velocity according to Eq. (21) (see Section 5.2)
5. Use the level set method to update ¢.

W

5.2. Interface velocity calculation

In the level set method, the interface velocity V' should be defined on the whole domain (or a narrow
band near the interface). In the present algorithm, 7 is first computed on the nodes near the interface (de-
picted as empty circles in Fig. 4) using Eq. (21). A node is marked as being near the interface if at least one
of its neighboring nodes has a different sign of ¢. Eq. (21) involves heat fluxes ¢, and ¢,, equilibrium tem-
perature 7™ and average temperature within the diffused-interface 7. All these variables are computed on
the nodes near the interface to obtain V using the methodology discussed in Sections 5.2.1 and 5.2.2. After
V is computed on these nodes, it is extended to other nodes using the algorithm discussed in Section 5.2.3.
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5.2.1. Calculation of the heat flux jump
We use the following two steps to compute ¢, and ¢; at the nodes near the interface:

1. For nodes with ¢ < —w, one computes ¢, = k,VT - n, where VT is the temperature gradient approxi-
mated using central differencing or upwind differencing. Similarly, for nodes with ¢ > w, one computes
qr= k]VT “n.

2. Solving aai[ +n-Vq, =0 in the region ¢ € [—w,w] using the values of ¢, in the region ¢ < —w as bound-
ary condition extrapolates ¢, in the normal interface direction. Similarly, solving % —n-Vgq, =0 in the
region ¢ € [—w,w] using the values of ¢; in the region ¢ > w as boundary condition extrapolates ¢, in the
opposite normal direction to the interface. This one-way extrapolation method is referred to as the ‘ghost
fluid method’ in [21,24].

Note that after the second step above, ¢, and ¢; are computed on all nodes belonging to the region ¢
€ [—w,w]. Since all nodes near the interface (empty circles in Fig. 4) are included in this region, ¢, and ¢,
are now computed on all nodes near the interface.

5.2.2. Interpolation of the interface temperature
The equilibrium temperature 7™ can be computed from the Gibbs-Thomson relation as follows:

T =Ty + ek + ey V" (25)

As discussed earlier in Section 3, we will use Ty (temperature at ¢ = 0) to approximate 7 (average temper-

ature within the diffused-interface). However, in general, the nodes near the interface will not satisfy ¢ = 0. So
interpolation is necessary to obtain 77. This can be easily computed using the following equation:

T1=T—(VT-n)d, (26)

where VT is calculated using simple differencing techniques.
5.2.3. Extending the interface velocity away from the interface

With ¢, g;, T* and Ty computed on the nodes near the interface, the interface velocity can be calculated at
these nodes using Eq. (21). One can then perform a two-way extrapolation to extend the interface velocity to

/1

Fig. 4. Extending the interface velocity away from the freezing interface. Note that the velocity V is first computed at the points
depicted with empty circles, then at the solid circle points and finally at the points shown with squares.
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every other nodal point as described in [21,25]. In the present simulation, we use a slightly faster method
defined by the following steps (see Fig. 4):

1.Extend the interface velocity to band within Ax away from the interface. For all the points within the
band Ax but not near the interface (for example, at point P in Fig. 4), draw a circle with radius 1.2Ax,
and calculate the average interface velocity for all the points near the interface and within this circle as
its velocity. For example, Vp = Yoitlw,

2.Extend the interface velocity to a band within 2Ax away from the interface. For all the points within the
band 2Ax and outside the band Ax, draw a circle with radius 1.2Ax, and calculate the average interface

velocity for all the points within band Ax and within this circle as its velocity.

Using this method, one can extend the interface velocity nAx away from the interface with just » itera-
tions. In the simulations of Section 7, the narrow band used to extend the velocity for solving the level set
equation was 3Ax on each side of the interface. Although accuracy is sacrificed, this method is faster than
the ghost fluid method, which is constrained by the CFL condition. After extension of the interface velocity,
the velocity needed for the level set calculation can be defined within a narrow band. As an alternative
method, one can use the fast-marching method to extend the interface velocity using a heap data structure
to achieve time complexity of only O(NlogN), where N is the number of nodes where the velocity is
extended [15].

5.3. Incorporating melt convection

It has been shown from numerical simulations [2,4,26-28] and experiments [29] that fluid flow has an
important effect on crystal growth. There are a variety of ways to incorporate convection using the
phase-field method or front-tracking methods. In [27], the solid is treated as a highly viscous liquid by let-
ting the viscosity depend on the phase-field variable in the standard Navier-Stokes equations. In [26], the
no-slip condition between the melt and the solid was realized via a drag resistivity in the diffused-interface
region. In [2], the Navier—Stokes equations are solved in two steps (with the first step considering only the
advection and viscous terms and a trial pressure, and the second step considering only the pressure gradi-
ent). In these two steps, the unprojected velocity and the pressure gradient are multiplied by an index func-
tion to set the velocity in the solid to zero.

In this work, we treat the diffused-interface as a narrow ‘mushy zone’. Volume-averaging is then applied
to the whole region. The velocity in the solid region is set to zero, so that no-slip condition is applied at the
solid/liquid interface. The formulation is briefly summarized below with more details provided in [19]. The
flow equations are first re-cast in dimensionless form as follows:

—a"(axt’ Vv (L’ ’g(x’ ’)) — Vp(x, 1) +p—(’;’ D90+ - [PHV¥(x,1) + (Vo(x, 1))

1 - ) Pr
— % mv(x, t) — ¢B"Ra1‘0(x, t)eg,

where Pr is the Prandtl number defined as v,/a;, Da is the Darcy number defined as o/D; and Rar is the
thermal Rayleigh number defined as Sr|g|(Ty — Twm)L>/vioy. The function spaces S, and S, are then intro-
duced as follows:

Sy={vlrely’, divwel, v=0ondQ}

SpE{pLDGLz, /dezO}.
Q
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The classical Galerkin formulation for the flow problem can then be stated as: Find V= {v,p} € S, x S,
such that for all W= {w,q} € S, xS, B(W,V)= L(W) holds, where:

B oy v (1—®)* Pr
B(W, V) = ntgw - (&‘FVV(E) +TD_GV> dQ*/vawdQ

—|—/PrVw~(Vv+VvT)dQ+/qV-de,
Q Q
L(W):/%Vfb-wdQ—/w-diPrRaTHeg dQ.

Q Q

In the finite element implementation of the Navier-Stokes equations, stabilizing techniques are needed
to accommodate equal-order interpolation velocity—pressure elements. A stabilized FEM technique for
porous media flows is presented in [19] and is briefly discussed below for completeness. After introducing
a modified pressure space S|, as follows:

54 {p|peH1<Q>, [ paa- o}, (27)

the stabilized weak form is the following: Find ¥ = {v,p} € S, x S| such that for all W = {w,q} € S, x S|
the following holds:

Bstab(W7 V) = Lstab(W)a (28)
with:

By (W, V) =B(W, V) + / F(v,p)-9(w,q)dQ + / sV - vV - wdQ, (29)

Q Q
I _ p
(W) = L(W) + / {EVd) — PrRaTQeg} - G(w,q) dQ, (30)
Q

where % and ¥ are defined as:

~ _ov v (1—®)* Pr )

w 1—®)? pPr

G(w,q) = Tyv, - V(E) - 12% Da” 3 PrV2w 4 1,Vg (32)
with v, a divergence-free velocity, which in the implementation of Eq. (28) at a given time is usually taken
as the known velocity at the previous time step. The particular values of the parameters ty,...,75 used in

this work are given in [19]. Four-node bilinear finite elements (in 2D) and eight-node brick trilinear finite
elements (in 3D) were used for both velocity and pressure interpolations. In closing, we note that in the
problems examined in Section 7, Rar = 0 and the flow is induced by inlet velocity conditions.

6. Summary of the algorithm

A finite difference scheme is used for the level set calculations so that higher-order accuracy (third-
order WENO scheme in space and third-order Runge—Kutta in time) can be achieved [22]. The same
structured grid is used for both finite difference approximations in the level set calculations and the
finite element approximations of the heat and flow problems. A summary of the overall algorithm is
provided below.
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1. Update level set variable ¢:
(a) Copy ¢ to ¢" '
(b) Copy Vto V"~
(c) Determine the time step Af and extended velocity V.

2. Copy @ to "~ '. Update @ using ¢ according to Eq. (11).

3. Solve the heat equation utilizing @~ ' and ®. A fully implicit scheme is used in these calculations. The
tolerance for the residual vector is taken as ||bl, < 107>, If no fluid flow effects are incorporated, the dis-
cretized equations are only solved once.

4. Use ¢ to construct an artificial mushy zone and solve the fluid flow equations with tolerance of residual
vector ||b], < 107, permeability K, = 10", and Rat = 0.

5. Set t =t,_1 + At. Return to step 1.

7. Numerical examples
7.1. Solidification in a corner

This example is the solidification of a pure material in an infinite corner region with k,=k; =1,
¢s=c¢;=1,L=0.25and p = 1. The melting and initial temperatures are 7, = 0 and Tj, = 0.3, respectively.
A constant temperature condition 7y = —1 is applied to the two boundary sides of the region. The analyt-
ical solution for the non-dimensionless interface position is given in [30].

To simulate this infinite corner Stefan problem, we use a domain of 5 x 5 discretized with a quadrilateral
grid. At the left side and bottom sides of the domain, the temperature is kept at 7,,, whereas the top and
right sides are assumed to be adiabatic. This is only an approximation of the original problem with a solu-
tion that at early times should compare well with the analytical solution of the infinite corner problem.

We considered grids of different sizes. Fig. 5(a) shows that the numerical solution converges to the
analytical solution very well. In Fig. 5(b), we define the error as the maximum distance of the calculated
interface position from the analytical solution. This is computed by (1) finding all the elements cut by
the zero level set, (2) interpolating points which are on element edges and satisfy ¢ = 0, and (3) calculating

5 B
- ——e—— Analytical solution r
B —— = Mesh 10x10 0.25, .
4 r ———= Mesh20x20 4T Mesh 10x10
- === Mesh 40x40 r
. Mesh 80x80 r
L 02
3_ -
I 5 [
i LE 0'15: Mesh 20x20
2+ L
- 01
1 0.05
i [ Mesh 40x40
L T Mesh 80x80
L Cov v v 0y b by 1
ol v v b b b b b %5 0.4 0.3 0.2 0.1 0
0 1 2 3 4 5 L
a b Grid size (dx)

Fig. 5. Convergence study of the infinite corner problem (time 0.9) (a) front position using various mesh sizes (b) maximum distance of
the calculated interface from the analytical solution versus grid size.
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distance of the interpolated points to the analytical solution, which is discretized into 100 points. As shown
in Fig. 5(b), the error drops almost quadratically (=2.4(Ax)?) with the grid size Ax.

7.2. Growing of a circle and a sphere in an undercooled melt

The dynamical evolution away from an unstable steady-state was studied in [31,32]. It was found that
under conditions favoring rapid solidification in 2D, the radius of the growing circle satisfies R(¢) o< ¢. In
3D, the radius of the growing sphere satisfies R(#) o< v/z. Using the presented numerical scheme, we simu-
lated the growth of an initial seed with radius 1 with initial temperature 0 located in the middle of the do-
main [—5,5]"9, where the number of spatial dimensions nsd = 2 for the growing circle example and nsd = 3
for growing sphere. The rest of the domain is at initial temperature 7o = —0.5. The solid/liquid interface is
always at temperature Ty, = 0 without surface tension or kinetic undercooling. A constant temperature
boundary condition 7= —0.5 is applied at the boundary of the domain. Other parameters in the calculation
are k,=k;=1, ¢,=¢;=1, L=1 and p=1. We use a 100x 100 mesh for the 2D simulation and
100 x 100 x 100 mesh for the 3D simulation. Our results shown in Fig. 6 verify that after a “burn-in” per-
iod, the radius of the solidifying circle grows linearly with time in 2D and the radius of the solidifying
sphere in 3D grows linearly with the square root of time.

7.3. Crystal growth in an undercooled melt: effects of anisotropy and surface tension

This example was originally addressed in [1] using a front-tracking method and re-examined in [16] using
an implementation of the level set method. The material parameters defining the problem are k, = k; =1,
¢s=¢=1,L=1,p=1and Ty, =0. On the freezing interface I', we consider the classical Gibbs—Thomson
relation given in Eq. (5) with &, = &y = —0.002. The computational domain is taken as [—2,2] x [—2,2]. Insu-
lated boundary conditions are considered at all sides of the two-dimensional domain.

At time zero, we consider a small solid seed in the middle of the computational domain. Its geometry is
described as follows:

x(s) = (R 4 Pcos(8ms)) cos(2ms), (33)
¥(s) = (R + Pcos(8ns)) sin(2ms), (34)

where R = 0.1 and P = 0.02. The initial temperature of the seed is taken as 0 and the initial temperature of
the undercooled melt as —0.5. In the implementation of this example, we considered three different finite

Circle radius
Sphere radius

Fig. 6. Radius of a solidifying circle and sphere in an undercooled melt: (a) growing circle; (b) growing sphere.
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Fig. 7. Crystal growth in the presence of surface tension: (a) mesh 100 x 100; (b) mesh 200 x 200; (c) mesh 400 x 400.

element meshes (100 x 100, 200 x 200 and 400 x 400). These studies allow us to investigate and report on the
mesh-dependency of the results obtained with the present methodology.

For these calculations Acpr, = 0.3. To accelerate our simulation, the time step size is adjusted automat-
ically according to the CFL condition thus the lines shown in Fig. 7 are not evenly separated with time. The
growth results shown in [1,16] are in increments of 0.04 up to a final time of 0.8. Notice in Fig. 7 that at time
0.8, a steady-state has been reached and as expected the area of the computed solid region is exactly half of
the total area of the domain. However, the area of the solid region at steady-state (time 0.8) is significantly
different for the morphologies with low mesh resolution 100 x 100 comparing with high mesh resolution
400 x 400 in both [1,16]. The reason is that when Dirichlet boundary condition is applied at the solid/liquid
interface, discretization error leads to high mesh-dependency. In our algorithm, we avoided applying
Dirichlet boundary conditions on the interface so that energy conservation is satisfied leading to mesh-
insensitive results.

We note that the grid refinement results shown in Fig. 7 compare well with those given in [16]. The mor-
phologies obtained in [1] using a front-tracking technique appear to have a much higher mesh-dependency
than the results reported here. The difference in published results [1,3,16,33] for this problem suggest that its
solution is highly sensitive to perturbations during the solution process and that the problem is indeed a
non-trivial one.

The above simulations were repeated but without the effects of surface tension, i.e., with ¢, = 0 and all
other conditions in Eq. (5) as before. Fig. 8 shows the results of this simulation for a mesh size 400 x 400.
Comparing with the results in Fig. 7, it is seen that the crystal as expected is growing in a much more unsta-
ble mode.

7.3.1. Sixfold symmetric growth

We also computed the solution to a crystal growth problem under anisotropy with sixfold symmetry
examined previously in [33]. The problem definition is similar to the earlier example.

At time zero, a small solid seed is put in the middle of the computational domain [—2,2] x [—2,2]. Its
geometry is described from Eqgs. (33) and (34). The initial temperature of the seed is taken as 0 and the
initial temperature of the undercooled melt as —0.8. The kinematic undercooling coefficient is constant with
value ¢, = —0.001. The surface tension (curvature undercooling coefficient) is specified by the following
anisotropic model with sixfold symmetry:

g = —0.001 { 1.0+04 E sin*3(0 — m/2) — 1.0} }

All other material properties are normalized as 1.
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Fig. 8. Unstable crystal growth without curvature effect using a mesh of 400 x|#00.

is example, the initial seed has a fourfold symmetry while ¢ has a sixfold sylnmetry.|/This difference
to study how initial perturbations affect the crystal growth. Using a||grid |of] 400 x 400 and
and at final time 0.036, we obtain the crystal interfaces shown in Fig. 9
‘ig. 9, we can conclude that the primary dendrite arms are determined by the growth mechanism
Nhile the initial perturbations only affect the formation of se¢ondary| dendritic arms.

s poifitechout in [33], the formed secondary dendritic arms are different for cogrse and fine grid simu-

latid\K\s (sde Fig\Q(a) and (b)), while the primary dendrite tips are growing with the same velocity for both
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grids (they all reach the computational boundary at time about 0.036). However, note that in the work of
[33] using a front-tracking method with markers, the total time for the crystal to reach the computational
boundary varied from 0.035 with grid 800 x 800 to 0.045 with grid 400 x 400. The apparent improvement
provided by the present methodology may be due to its energy conserving nature.

7.4. Two-dimensional steady-state dendritic growth: comparison with solvability theory

Steady-state features of dendritic growth have been studied extensively using phase-field models [6,7] and
the level set method [17]. These calculations have been in good agreement with the predictions of micro-
scopic solvability theory. We will show here that an excellent agreement is also obtained using the devel-
oped energy conserving level set method. In the problem considered, the equilibrium temperature in the
freezing interface I' incorporates the effects of anisotropy as

T" = —do(1 — 15ecos40)x (35)

with 0 the angle between the outward normal and the x-direction, dy = 0.5 and € = 0.05. The initial liquid
temperature and boundary temperature (thus the undercooling considered) is A = 0.55. The remaining
material parameters are selected as k, = k;= 1, ¢, =¢;= 1, L =1 and p = 1. The obtained results are plotted
using a normalized velocity V = """T“V, a normalized position x = Y= dlo, and dimensionless time f = pc—’;zt.
These dimensionless variables are also used in all of the following examples. !

Our results shown in Fig. 10(a)-(d) obtained with a mesh of 800 x 800 compare fairly well with the
numerical results obtained using the phase-field method [6,7] and the level set method [17]. 