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Abstract

A method combining features of front-tracking methods and fixed-domain methods is presented to model dendritic

solidification of pure materials. To explicitly track the interface growth and shape of the solidifying crystals, a front-

tracking approach based on the level set method is implemented. To easily model the heat and momentum transport,

a fixed-domain method is implemented assuming a diffused freezing front where the liquid fraction is defined in terms of

the level set function. The fixed-domain approach, by avoiding the explicit application of essential boundary conditions

on the freezing front, leads to an energy conserving methodology that is not sensitive to the mesh size. To compute the

freezing front morphology, an extended Stefan condition is considered. Applications to several classical Stefan prob-

lems and two- and three-dimensional crystal growth of pure materials in an undercooled melt including the effects

of melt flow are considered. The computed results agree very well with available analytical solutions as well as with

results obtained using front-tracking techniques and the phase-field method.

� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Simulation of solidification and crystal growth processes has been of interest for a number of years not

only because of its scientific value in understanding pattern formation in nature but also because of its

importance in many technological applications. The classical Stefan problem with a sharp interface is well

accepted for modelling the solidification of pure materials. Front-tracking techniques have been widely
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used for such sharp front solidification processes. Recently, these techniques have been used successfully to

reproduce the complex dendritic structure in crystal growth in undercooled melts including effects such as

liquid trapping, tip-splitting, side branching and coarsening [1–3]. Successful three-dimensional front-

tracking implementations including the effects of melt flow have been presented [4]. The advantages of

front-tracking methodologies lie in their ability to directly enforce the freezing interface temperature
(Gibbs–Thomson) relation and energy balance (Stefan condition). Unfortunately, many of the current

implementations of these conditions do not allow global energy conservation even though they may satisfy

the Stefan condition pointwise. In addition, such formulations appear to result in high sensitivity to mesh

size and orientation.

During the last two decades, significant progress has been made in the simulation of microstructure evo-

lution in solidification processes using phase-field methods [5–7]. These approaches, by considering a

diffused-interface and a fixed-grid, avoid the need for applying temperature boundary conditions on the

moving interface. A review of recent progress in phase-field methods as applied to solidification processes
is given in [5]. The basic idea of the phase-field method is to employ a phase-field variable U that varies

smoothly from zero to unity between the two phases over the diffused-interface region, which has a small

but numerically resolvable thickness. The phase-field variable serves to distribute the interfacial forces over

the diffused freezing region. It is governed by a phase-field control equation derived from the thermody-

namics of phase transition [5]. Important physical mechanisms, such as curvature, anisotropy and kinetics

effects, are implicitly incorporated in the phase-field control equation. This leads to many computational

advantages. For example, one does not need to compute interfacial geometric quantities such as interface

curvature and outward normal vector.
The phase-field method can be shown to reduce to the standard sharp interface formulation in the limit

of vanishing interface thickness [8]. The quality of the solution deteriorates with increasing interface thick-

ness. This necessitates the grid spacing to be of the order of or smaller than the interfacial thickness. It has

been shown that the interface thickness must be smaller than the capillary length for the solution to con-

verge to the sharp interface limit [9,10]. Improved asymptotic coefficients have been derived for the thin-

interface limit of the phase-field equations which facilitate the use of a coarser grid [11]. Phase-field analysis

for unequal solid/liquid diffusivities leads to computational models which require finer grid resolution and

hence lead to slower computational performance [12]. One of the drawbacks of the phase-field method is
the significant computational effort required, especially when investigating dendritic growth in the presence

of convection and multiple array dendritic growth. However, the techniques of adaptive gridding and par-

allel computing have resulted in assuaging this drawback to some extent [13,14]. Another drawback of the

phase-field methods is related to the large number of parameters involved in the solution of the evolution

equations. These parameters are difficult to determine for accurate physical crystal growth simulation of

real world materials.

The level set method is an alternative method to handle the sharp interface front directly and to avoid

the asymptotic analysis needed in phase-field models [15]. It has been shown to be a promising mathemat-
ical tool for tracking the interface with low computational cost. It is widely used in various applications

such as two-phase flow, crack propagation, computer vision and image processing. In this method, inter-

facial geometric quantities such as curvature and outward normal can be easily calculated using the level set

variable /. The method was first applied to Stefan problems in [16]. Level set calculations for dendritic

growth were reported in [17]. In these works [16,17], the heat flux at nodes near the interface is interpolated

in order to calculate the interface velocity via the Stefan condition. During this interpolation, the temper-

ature on the interface is fixed at the equilibrium temperature defined from the Gibbs–Thomson relation.

However, like front-tracking methods, the direct application of temperature boundary conditions on the
interface and the computation of heat fluxes from the temperature nodal values usually lead to energy

conservation issues associated with the discretization error [18]. This may result in large variation of the

computed crystal shapes if meshes of different sizes and orientations are used.
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The method presented here combines features of front-tracking and fixed-domain methods. The level set

method is implemented to allow a direct calculation of the growth and shape of the solidifying crystals. An

energy conserving implementation of the level set method is used without the need to apply the temperature

boundary condition explicitly at the freezing interface. To easily model the heat and momentum transport,

a fixed-domain method is implemented assuming a diffused freezing front where the liquid fraction is de-
fined in terms of the level set function. The fixed-domain approach, by avoiding the need to explicitly apply

essential boundary conditions on the freezing front, leads to an energy conserving methodology that is not

sensitive to the mesh size or orientation. The present implementation is similar to that of the phase-field

method, except that the �phase-field variable� U is no longer governed by the phase-field control equation

but is defined using the level set (signed distance) variable /. The freezing front morphology is computed as

a post-processing operation using an extended Stefan condition.

This work provides a new approach for modelling dendritic solidification using a fixed finite element

grid. It avoids the need for adaptive or moving griding while at the same time provides an explicit and accu-
rate tracking of the interface front. It allows a rather simple integration of level set techniques with stabi-

lized volume-averaged based finite element techniques for thermal and momentum transport. The interface

conditions are accurately enforced on an implicit manner while maintaining energy conservation for the

overall system. The melt flow is modelled using equal-order velocity–pressure interpolation that has been

shown to lead to better convergence rates and accuracy [19] than the fractional step method commonly used

in dendritic solidification models. The present methodology will be shown to be computationally efficient

and accurate for both two- and three-dimensional problems. We will demonstrate that the methodology

performs very well in benchmark dendritic growth problems including growth under low-undercooling con-
ditions for which other numerical approaches do not work [20].

The plan of the paper is as follows. Section 2 introduces the sharp interface model including the effects of

fluid flow. Section 3 discusses a diffused-interface approximation of the Stefan problem. The level set for-

mulation is briefly reviewed in Section 4. Section 5 provides details on the implementation of the method

including modelling of the underlying transport phenomena. The overall methodology of the energy con-

serving scheme is discussed in Section 6. Section 7 presents several examples and compares their results with

those obtained from analytical and other numerical approaches. Finally, Section 8 provides a summary of

the work.
2. Definition of the Stefan problem

Let us consider the classical Stefan problem with a sharp interface including the effects of melt flow. The

liquid phase of a pure material at initial temperature T ‘
0ðx; yÞ is assumed to occupy a region X‘

0. This liquid

phase is either alone ðX‘
0 ¼ XÞ or in an unstable equilibrium with the neighboring solid phase

Xs
0 ðX ¼ X‘

0 [ Xs
0Þ at initial temperature T s

0ðx; yÞ. In the latter case, the regions X‘
0 and Xs

0 are separated
by the solid/liquid interface C0. The superscripts ‘ and s are used here to denote quantities corresponding

to the liquid and solid phases, respectively, whereas the subscript 0 is used to denote quantities at time t = 0.

We assume that solidification starts at time t = 0. The domains X‘ and Xs are time-dependent and the solid–

liquid interface C is moving with normal velocity V. The normal n to the interface C is defined as pointing

away from the solid region Xs. The domain X = X‘ [ Xs containing these two phases and its external

boundary oX are assumed constant (time-independent). Fig. 1 presents a typical schematic of the problems

considered.

We assume constant thermo-physical and transport properties, including viscosity l, density q, thermal
conductivity k, heat capacity c and latent heat L. The melt flow is assumed to be a laminar flow caused by

temperature-induced density variations (Boussinesq flow). Following standard notation, the governing

equations in the presence of fluid flow are given as follows:
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Fig. 1. Schematic of the sharp interface model of the solidification of a pure material (Stefan problem). The heat fluxes qs and ql are

defined on the freezing front.
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qscs
oT ðx; tÞ

ot
¼ ksr2T ðx; tÞ; x 2 Xs; ð1Þ

qlcl
oT ðx; tÞ

ot
þ v � rT ðx; tÞ

� �
¼ klr2T ðx; tÞ; x 2 X‘; ð2Þ

ql
ov

ot
þrvðx; tÞvðx; tÞ

� �
¼ �rpðx; tÞI þr � l rvðx; tÞ þ ðrvðx; tÞÞT

h i
þ b; x 2 X‘; ð3Þ

r � vðx; tÞ ¼ 0; x 2 X‘; ð4Þ
where v is the melt flow velocity and b is the buoyancy body force.
The temperature on the interface C denoted as TI is equal to the equilibrium temperature T*. This equi-

librium temperature is given from the Gibbs–Thomson relation as follows:
T � ¼ Tm þ ecjþ eVV ; ð5Þ

where Tm is the pure material melting temperature, j is the curvature of the freezing interface, and ec and eV
are the curvature and kinetic undercooling coefficients, respectively.

The motion of the interface velocity V is dictated by the classical Stefan equation (energy balance at the
freezing front) as follows:
qsLV ¼ ½q� ¼ qs � ql; ð6Þ

where [q] denotes the jump of the heat flux q = k$T Æ n at the freezing front.

To describe the interface, we construct a field / such that at any time t, the interface is equal to the zero

level set of /, i.e.,
CðtÞ ¼ fx 2 X : /ðx; tÞ ¼ 0g. ð7Þ

Initially, / is set equal to the signed distance function from the interface C0
/ðx; 0Þ ¼
þdðx; 0Þ; x 2 X‘

0;

0; x 2 C0;

�dðx; 0Þ; x 2 Xs
0;

8><
>: ð8Þ
where d(x,0) is the normal distance of a point x from the interface.
The idea behind the level set method is to move / with the correct speed V at the interface which is ex-

tracted from Eq. (6). The interface position is thus implicitly stored in /. The equation of motion governing

/ is given as follows:
/t þ V jr/j ¼ 0. ð9Þ

This equation moves / with correct speed at the interface so that C will always be equal to the zero level set

of / [15].
With the above introduction of the level set function, we will re-write the Stefan condition for the clas-

sical Stefan problem as follows:



Fig. 2.
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qsLV ¼ ½q�; qs ¼ lim
/!0�

q; ql ¼ lim
/!0þ

q; ð10Þ
where the notation 0+ and 0� is used here for notational simplification to denote the values of / as we

approach the freezing front from the solid and liquid sides, respectively.

Eqs. (1)–(5) and (10) together with appropriate initial temperature and velocity conditions, boundary

thermal conditions on C and the no-slip condition in all solid boundaries completely define what we here

refer to as the Stefan problem. Note that in the literature the classical Stefan problem does not include melt

flow. These effects have been included herein to allow us to study their importance in crystal growth of pure
materials in undercooled melts.
3. Introducing the extended Stefan problem

Many of the difficulties in the implementation of the Stefan problem defined earlier are related to the

application of the essential boundary condition given in Eq. (5). Front-tracking techniques attempt to apply

this condition directly to the moving front, often leading to schemes that are not energy conserving. On the
other hand, phase-field methods consider a diffused-interface model in an attempt to avoid a direct appli-

cation of this condition. However, phase-field models require proper parameter selection through an

asymptotic analysis in order to model the sharp interface solidification problem.

To take advantage of the front-tracking capability of the level set methods and of the ability of phase-

field methods to avoid directly applying Eq. (5), we introduce in this section the extended Stefan problem

that uses features of both methods. Fig. 2 shows a schematic of the new problem.

Assumption 1. We assume that solidification occurs in a diffused zone of width 2w that is symmetric

around / = 0 (see Fig. 2). The half-width w is not related with the underlying physics of the solidification of

a pure material (which usually happens on a thickness of the order of atomic distances). In this work, the

half-width w is selected based on the size of the grid used in the discretization of the problem.

A diffused-interface model will be used in the solution of the energy and momentum equations. Follow-

ing ideas similar to those in diffused-interface models, let us define the function U(x,t) as follows:
Uðx; tÞ ¼
1; /ðx; tÞ > w;

0; /ðx; tÞ < �w;
/ðx;tÞ
2w þ 0.5; /ðx; tÞ 2 ½�w;w�.

8><
>: ð11Þ
Since solidification occurs in a diffused-interface, following a volume-averaging approach as in [19], we can

write the energy equation (applicable in the whole domain X) as follows:
½qlUcl þ qsð1� UÞcs�
oT
ot

þ qlclv � rT ¼ r � ðkrT Þ � qs½Lþ ðcs � clÞðT � TmÞ� _U; ð12Þ
where U plays the role of the phase-field variable in phase-field models and k ” klU + ks(1 � U). Similarly,

the volume-averaging momentum and continuity equations take the following forms:
Schematic of the diffused-interface model of the solidification of a pure material (extended Stefan problem). The heat fluxes qs
are here defined at distances ±w from the actual sharp freezing front.
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oðqvÞ
ot

þr � q2

ql

vv

U

� �
¼ �rp þ p

U
rUþr � l r q

ql
v

� �
þrT q

ql
v

� �� �� �

� l
ð1� UÞ2

U2

q
ql

v

K0

þ Uqlgeg; ð13Þ

r � vðx; tÞ ¼ 0; ð14Þ
where q ” qlU + qs(1 � U), eg is the unit vector in the direction of gravity, g is the gravity constant and v
from now on denotes the volume-averaged velocity equal to Uvl [19]. For simplicity of the model, we as-

sume that the solid/liquid densities and specific heats are the same but we allow for different conductivities.

The Kozeny–Carman approximation for the permeability K(U) has been used directly in Eq. (13) with K0

denoting the permeability constant. Note that the governing conservation Eqs. (12)–(14) are applicable in

the whole domain X.
The transport equations for the extended Stefan problem are now defined from Eqs. (12)–(14) together

with appropriate initial temperature and velocity conditions, boundary thermal conditions on C and the no-

slip condition. Note that these equations completely define the temperature and melt flow, but since they

are based on a volume-averaging formulation, they do not directly involve the motion of the interface zone.

The freezing front motion will be computed by the level set function as it will be discussed below.

To compute the front velocity V (velocity of the interface / = 0) we cannot simply utilize Eq. (10), which
is based on the sharp front model. Instead, a modified energy balance is needed at the freezing zone as fol-

lows (see Fig. 2):
2qs~cw
D�T I

Dt
¼ qsLV þ ðql � qsÞ; qs ¼ lim

/!�w�
q; ql ¼ lim

/!wþ
q; ð15Þ
where �T I is the average temperature within the diffused-interface, and D�T I is the increase of �T I at the time

interval Dt. Also,
~c � 0.5 1þ qlcl
qscs

� �
cs; ð16Þ
and w+,�w� are defined following similar notation to that introduced earlier for Eq. (10). The term

2qs~cwD�T I on the left hand side of Eq. (15) is the energy change in the diffused-interface due to change

of temperature. Also note that the temperature on the zero level set denoted as TI is conceptually different

from �T I, which is the average temperature within the diffused mushy zone. Since the temperature varies only

slightly within the thin interface, in this work we will use TI to approximate �T I. The temperature TI can be
easily computed from interpolating temperature to zero level set. However, in order to maintain the

generality of the formulation, we will maintain the notation �T I for the average temperature within the

diffused-interface.

The Gibbs–Thomson constraint TI = T* with T* given in Eq. (5) ensures that the interface temperature is

the equilibrium temperature at each instant. To explicitly enforce this constraint, various methods like a

penalty method or a Lagrange multiplier approach can be used. In this work, we take an alternative ap-

proach. Since the numerical simulation provides solutions only at discrete time levels, we ensure that the

interface temperature approaches the equilibrium temperature at these time levels.

Assumption 2. The mean interface temperature �T I in the freezing zone of width 2w is allowed to vary from

the equilibrium temperature T* in such a way that
d�T I

dt
¼ �kN ð�T I � T �Þ; ð17Þ
where kN controls the rate with which �T I is designed to approach the desired equilibrium temperature.
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Assuming for example that the equilibrium temperature remains constant, integration of Eq. (17) leads

to the following:
�T IðtÞ � T � ¼ ð�T Ið0Þ � T �Þ expð�kN tÞ. ð18Þ

A relaxation time that controls how fast �T I approaches T* can then be defined as s = 1/kN. The relaxation

parameter s (or equivalently kN) is selected such that the interface reaches the desired equilibrium temper-
ature exponentially fast. An explicit integration of Eq. (17) over the time step Dt results in the following:
�T IðtnÞ � T � � ð�T Iðtn�1Þ � T �Þð1� kNDtÞ; ð19Þ

where the subscripts refer to time levels (n = 1, 2, . . .). To make sure that the interface temperature stably

converges to the equilibrium temperature, we require the following:
j1� kNDtj < 1 ) Dt <
2

kN
¼ 2s. ð20Þ
If we further require that �T I � T � does not change sign as it approaches zero ðT � ¼ �T IÞ, then Dt 6 s. In our

algorithms, for a given Dt, we select kN = 1/Dt so that the condition Dt 6 s is satisfied automatically. The

selection of Dt will be discussed in Section 4.

Substitution of the constraint of Eq. (17) to Eq. (15) results in the following modified energy balance at
the freezing front:
V ¼ ½q�
qsL

þ 2~cw
L

kNðT � � �T IÞ; qs ¼ lim
/!�w�

q; ql ¼ lim
/!wþ

q; ð21Þ
where the heat fluxes ql and qs are computed at the boundaries of the control volume. Note that in the

above formulation, we use the average temperature �T I instead of the temperature TI on the exact interface
(/ = 0). Eq. (21) will be used as the energy balance at the diffused-interface and will allow us to accurately

compute the interface velocity V. Note that the above scheme is only to ensure that the interface temper-

ature relaxes to the equilibrium temperature in a given time step.

Remark 1. Note that Eq. (17) is not used directly in the analysis but it is embedded in the modified Stefan
condition given in Eq. (21). To compute a finite front velocity when kN ! 1, Eq. (21) requires that TI = T*

in which case it is simplified to Eq. (10). It can be shown that, using Eq. (21), the numerical scheme for the

thermal problem of Eq. (12) leads to a discretized form of Eq. (17) thus weakly enforcing TI = T*. The

choices w = Dx and kN = 1/Dt are sufficient to ensure satisfaction of both Eqs. (5) and (10) and lead to an

accurate estimate of the front velocity V.
Remark 2. From a numerical point of view, the second term on the right hand side of Eq. (21) can be

thought of as the constraint T* � TI = 0 numerically enforced via a Lagrange multiplier method. A graph-

ical demonstration of an iterative process for the satisfaction of the constraint T* � TI = 0 is given in Fig. 3.

In this figure, we assume that the temperature field away from the freezing zone remains the same during

iterations. Fig. 3 shows the iterative process as TI approaches T* from below. This iterative procedure for

computing V was not needed in the calculations reported in Section 7 and one step calculation was
sufficient to evaluate V within the desired accuracy.
Fig. 3. Schematic of applying TI = T* with the correction of Eq. (21).
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Remark 3. The volume-averaging based energy Eq. (12) weakly accounts for the Stefan condition on the

freezing front by treating its contribution as a source term. This is typically the case with phase-field and

other diffused-interface models. The key element of the present formulation is that the phase variable U
(liquid volume fraction) is defined in terms of the level set function / that is used to track the freezing front

explicitly. In classical volume-averaging models of solidification, U is defined based on thermodynamic
update formulas using the computed temperature and equilibrium temperature at each point within the dif-

fused-interface. This last calculation is embedded in the calculation of /.
Remark 4. Curvature or kinetic undercooling effects play a significant role in solidification through the

Gibbs–Thomson relation Eq. (5). In the traditional phase-field method, an asymptotic analysis is required
to determine simulation parameters from the values of ec and eV used to model sharp front solidification.

The present level set method solves the extended Stefan problem directly without any need for an asymp-

totic analysis.
4. The level set method

In this work, we consider finite difference approximations for the level set function calculation and vol-

ume-averaging based stabilized finite element techniques for modelling the thermal and fluid flow problems

to capitalize on recent advances in the implementation of the level set method with finite difference tech-
niques. Only structured grids are considered in this work. For the finite element discretization, four-node

bilinear elements (in 2D) and eight-node brick trilinear elements (in 3D) are used.

Let / be a signed distance variable (minimum distance to the interface between the two phases) satisfying

|$/| = 1. Then the normal direction of the interface (pointing from the solid to the liquid) is calculated as

follows:
n ¼ r/
jr/j . ð22Þ
The curvature j of the interface in terms of / is computed as discussed in [21]. Eq. (9) is solved for the

level set function in a narrow band near the interface. For this extension, the interface velocity is calculated

from the extended Stefan condition Eq. (21). Details of numerical schemes for the solution of Eq. (9) can be

found in [15,22].

After an update according to the level set Eq. (9), / does not in general remain a signed distance func-

tion. It is thus necessary for re-initialization where the following equation is iterated until reaching steady-

state [16]:
/t ¼
/0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/2

0 þ e2
q ð1� jr/jÞ; ð23Þ
where /0 is the initial level set value to be re-initialized. After / reaches steady-state, |$/| = 1, i.e., / is a

signed distance. The parameter e in Eq. (23) takes some small value and is needed for the formulation to

remain well-posed as / ! 0. We use e = 2Dx in our calculations [16]. The time step in this re-initialization

process is taken as Dt = Dx/5 and the number of iterations in the re-initialization process is taken to be
200kCFL, where kCFL is the CFL condition coefficient ranging from 0 to 1. Note that the solid/liquid inter-

face is advanced within a time step with a distance kCFLDx. Thus, based on the current re-initialization pro-

cess, the more distance the interface is advanced forward within a time step, the more iterations will be



44 L. Tan, N. Zabaras / Journal of Computational Physics 211 (2006) 36–63
required to rebuild the signed distance. Unless it is otherwise stated, the CFL coefficient in all the examples

of Section 7 is selected as kCFL = 0.3.
5. Energy conserving level set method

The level set method has been successfully applied to Stefan problems in [16,17,23]. In this work, we ap-

ply the level set method to the extended Stefan problem. Because the Dirichlet temperature boundary con-

dition is not applied directly on the interface, we can use energy conserving numerical schemes for the

implementation of the heat transfer problem [18]. While the front-tracking method in [3] and the level

set methods in [16,17,23] are all analytically energy conserving, when applying Dirichlet temperature

boundary condition on the interface, numerically they do not conserve energy. For the method presented

in this work (as well as in phase-field methods), energy is not only conserved analytically but also numer-
ically. This is the reason we refer to the present methodology as an �energy conserving level set method�.

5.1. Stability analysis: selection of the time step and kN

To simulate sharp-front solidification, one will theoretically be required to consider a very high value

for kN. Such a choice will of course lead to prohibitively small time steps via the stability condition

Dt 6 s = 1/kN. In this work, our choice of Dt is based on the CFL condition for the level set function

calculation, i.e.,
Dt 6 kCFL
Dx
V max

; ð24Þ
where kCFL is the CFL coefficient [21], and Vmax is the maximum interface nodal velocity.

The subsequent choice of kN is such that Dt 6 1/kN to allow the interface temperature TI to asymptot-

ically converge to the equilibrium temperature T*. As discussed earlier, our selection of kN that satisfies the

above condition is kN = 1/Dt.
In summary, the scheme to select Dt and kN is the following:

1. Choose kCFL between 0 and 1. In the 3D diffusion crystal growth under low-undercooling conditions

example examined in Section 7.5.2, kCFL is selected as 0.1. In all other examples, we use kCFL = 0.3.
2. Select a time step size as Dt ¼ kCFL Dx

V n�1
max
, where V n�1

max is the maximum interface nodal velocity at the pre-

vious time level.

3. Select kN = 1/Dt.
4. Calculate the interface velocity according to Eq. (21) (see Section 5.2)

5. Use the level set method to update /.

5.2. Interface velocity calculation

In the level set method, the interface velocity V should be defined on the whole domain (or a narrow

band near the interface). In the present algorithm, V is first computed on the nodes near the interface (de-

picted as empty circles in Fig. 4) using Eq. (21). A node is marked as being near the interface if at least one

of its neighboring nodes has a different sign of /. Eq. (21) involves heat fluxes qs and ql, equilibrium tem-

perature T* and average temperature within the diffused-interface �T I. All these variables are computed on

the nodes near the interface to obtain V using the methodology discussed in Sections 5.2.1 and 5.2.2. After

V is computed on these nodes, it is extended to other nodes using the algorithm discussed in Section 5.2.3.
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5.2.1. Calculation of the heat flux jump

We use the following two steps to compute qs and ql at the nodes near the interface:

1. For nodes with / 6 �w, one computes qs = ks$T Æ n, where $T is the temperature gradient approxi-

mated using central differencing or upwind differencing. Similarly, for nodes with / P w, one computes
ql = kl$T Æ n.

2. Solving oqs
ot þ n � rqs ¼ 0 in the region / 2 [�w,w] using the values of qs in the region / 6 �w as bound-

ary condition extrapolates qs in the normal interface direction. Similarly, solving oql
ot � n � rql ¼ 0 in the

region / 2 [�w,w] using the values of ql in the region / P w as boundary condition extrapolates ql in the

opposite normal direction to the interface. This one-way extrapolation method is referred to as the �ghost
fluid method� in [21,24].

Note that after the second step above, qs and ql are computed on all nodes belonging to the region /
2 [�w,w]. Since all nodes near the interface (empty circles in Fig. 4) are included in this region, qs and ql
are now computed on all nodes near the interface.

5.2.2. Interpolation of the interface temperature

The equilibrium temperature T* can be computed from the Gibbs–Thomson relation as follows:
Fig. 4.

depicte
T � ¼ Tm þ ecjþ eVV n�1. ð25Þ

As discussed earlier in Section 3, we will use TI (temperature at / = 0) to approximate �T I (average temper-

ature within the diffused-interface). However, in general, the nodes near the interface will not satisfy/ = 0. So

interpolation is necessary to obtain TI. This can be easily computed using the following equation:
T I ¼ T � ðrT � nÞ/; ð26Þ

where $T is calculated using simple differencing techniques.

5.2.3. Extending the interface velocity away from the interface

With qs, ql, T* and TI computed on the nodes near the interface, the interface velocity can be calculated at

these nodes using Eq. (21). One can then perform a two-way extrapolation to extend the interface velocity to
2 x

Q

WP

U

V

x

Extending the interface velocity away from the freezing interface. Note that the velocity V is first computed at the points

d with empty circles, then at the solid circle points and finally at the points shown with squares.
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every other nodal point as described in [21,25]. In the present simulation, we use a slightly faster method

defined by the following steps (see Fig. 4):

1.Extend the interface velocity to band within Dx away from the interface. For all the points within the

band Dx but not near the interface (for example, at point P in Fig. 4), draw a circle with radius 1.2Dx,
and calculate the average interface velocity for all the points near the interface and within this circle as
its velocity. For example, V P ¼ V QþVW

2
.

2.Extend the interface velocity to a band within 2Dx away from the interface. For all the points within the

band 2Dx and outside the band Dx, draw a circle with radius 1.2Dx, and calculate the average interface

velocity for all the points within band Dx and within this circle as its velocity.

Using this method, one can extend the interface velocity nDx away from the interface with just n itera-

tions. In the simulations of Section 7, the narrow band used to extend the velocity for solving the level set

equation was 3Dx on each side of the interface. Although accuracy is sacrificed, this method is faster than
the ghost fluid method, which is constrained by the CFL condition. After extension of the interface velocity,

the velocity needed for the level set calculation can be defined within a narrow band. As an alternative

method, one can use the fast-marching method to extend the interface velocity using a heap data structure

to achieve time complexity of only O(N logN), where N is the number of nodes where the velocity is

extended [15].

5.3. Incorporating melt convection

It has been shown from numerical simulations [2,4,26–28] and experiments [29] that fluid flow has an

important effect on crystal growth. There are a variety of ways to incorporate convection using the

phase-field method or front-tracking methods. In [27], the solid is treated as a highly viscous liquid by let-

ting the viscosity depend on the phase-field variable in the standard Navier–Stokes equations. In [26], the

no-slip condition between the melt and the solid was realized via a drag resistivity in the diffused-interface

region. In [2], the Navier–Stokes equations are solved in two steps (with the first step considering only the

advection and viscous terms and a trial pressure, and the second step considering only the pressure gradi-

ent). In these two steps, the unprojected velocity and the pressure gradient are multiplied by an index func-
tion to set the velocity in the solid to zero.

In this work, we treat the diffused-interface as a narrow �mushy zone�. Volume-averaging is then applied

to the whole region. The velocity in the solid region is set to zero, so that no-slip condition is applied at the

solid/liquid interface. The formulation is briefly summarized below with more details provided in [19]. The

flow equations are first re-cast in dimensionless form as follows:
ovðx; tÞ
ot

þr � vðx; tÞvðx; tÞ
U

� �
¼ �rpðx; tÞ þ pðx; tÞ

U
rUþr � ½Prðrvðx; tÞ þ ðrvðx; tÞÞTÞ�

� ð1� UÞ2

U2

Pr
Da

vðx; tÞ � UPrRaThðx; tÞeg;
where Pr is the Prandtl number defined as ml/al, Da is the Darcy number defined as al/Dl and RaT is the

thermal Rayleigh number defined as bT|g|(T0 � Tm)L
3/mlal. The function spaces Sv and Sp are then intro-

duced as follows:
Sv � fvjv 2 Lnsd
2 ; divv 2 L2; v ¼ 0 on oXg;

Sp � pjp 2 L2;

Z
X
p dX ¼ 0

� �
.
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The classical Galerkin formulation for the flow problem can then be stated as: Find V ” {v,p} 2 Sv · Sp

such that for all W = {w,q} 2 Sv · Sp B(W,V) = L(W) holds, where:
BðW ;VÞ ¼ ntXw � ov

ot
þ v � r v

U

� 	
þ ð1� UÞ2

U2

Pr
Da

v

 !
dX�

Z
X
pr � w dX

þ
Z
X
Prrw � ðrvþrvTÞ dXþ

Z
X
qr � v dX;

LðWÞ ¼
Z
X

p
U
rU � w dX�

Z
X
w � UPrRaTheg dX.
In the finite element implementation of the Navier–Stokes equations, stabilizing techniques are needed
to accommodate equal-order interpolation velocity–pressure elements. A stabilized FEM technique for

porous media flows is presented in [19] and is briefly discussed below for completeness. After introducing

a modified pressure space S0
p as follows:
S0
p ¼
def pjp 2 H 1ðXÞ;

Z
X
p dX ¼ 0

� �
; ð27Þ
the stabilized weak form is the following: Find V ¼ fv; pg 2 Sv � S0
p such that for all W ¼ fw; qg 2 Sv � S0

p

the following holds:
BstabðW ;VÞ ¼ LstabðWÞ; ð28Þ

with:
BstabðW ;VÞ ¼ BðW ;VÞ þ
Z
X
Fðv; pÞ � Gðw; qÞ dXþ

Z
X
s5r � vr � w dX; ð29Þ

LstabðWÞ ¼ LðWÞ þ
Z
X

p
U
rU� U PrRaTheg

n o
� Gðw; qÞ dX; ð30Þ
where F and G are defined as:
Fðv; pÞ ¼ ov

ot
þ v� � r

v

U

� 	
þrp þ ð1� UÞ2

U2

Pr
Da

v� Prr2v; ð31Þ

Gðw; qÞ ¼ s1v� � r
w

U

� 	
� s2

ð1� UÞ2

U2

Pr
Da

w� s3Prr2wþ s4rq ð32Þ
with v� a divergence-free velocity, which in the implementation of Eq. (28) at a given time is usually taken

as the known velocity at the previous time step. The particular values of the parameters s1, . . . ,s5 used in

this work are given in [19]. Four-node bilinear finite elements (in 2D) and eight-node brick trilinear finite

elements (in 3D) were used for both velocity and pressure interpolations. In closing, we note that in the
problems examined in Section 7, RaT = 0 and the flow is induced by inlet velocity conditions.
6. Summary of the algorithm

A finite difference scheme is used for the level set calculations so that higher-order accuracy (third-

order WENO scheme in space and third-order Runge–Kutta in time) can be achieved [22]. The same

structured grid is used for both finite difference approximations in the level set calculations and the
finite element approximations of the heat and flow problems. A summary of the overall algorithm is

provided below.
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1. Update level set variable /:
(a) Copy / to /n� 1.

(b) Copy V to Vn� 1.

(c) Determine the time step Dt and extended velocity V.

2. Copy U to Un� 1. Update U using / according to Eq. (11).

3. Solve the heat equation utilizing Un� 1 and U. A fully implicit scheme is used in these calculations. The

tolerance for the residual vector is taken as ibi2 6 10�5. If no fluid flow effects are incorporated, the dis-

cretized equations are only solved once.

4. Use / to construct an artificial mushy zone and solve the fluid flow equations with tolerance of residual

vector ibi2 6 10�5, permeability K0 = 10�5, and RaT = 0.

5. Set t = tn� 1 + Dt. Return to step 1.

7. Numerical examples

7.1. Solidification in a corner

This example is the solidification of a pure material in an infinite corner region with ks = kl = 1,

cs = cl = 1, L = 0.25 and q = 1. The melting and initial temperatures are Tm = 0 and Tin = 0.3, respectively.

A constant temperature condition T0 = �1 is applied to the two boundary sides of the region. The analyt-
ical solution for the non-dimensionless interface position is given in [30].

To simulate this infinite corner Stefan problem, we use a domain of 5 · 5 discretized with a quadrilateral

grid. At the left side and bottom sides of the domain, the temperature is kept at T0, whereas the top and

right sides are assumed to be adiabatic. This is only an approximation of the original problem with a solu-

tion that at early times should compare well with the analytical solution of the infinite corner problem.

We considered grids of different sizes. Fig. 5(a) shows that the numerical solution converges to the

analytical solution very well. In Fig. 5(b), we define the error as the maximum distance of the calculated

interface position from the analytical solution. This is computed by (1) finding all the elements cut by
the zero level set, (2) interpolating points which are on element edges and satisfy / = 0, and (3) calculating
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Fig. 5. Convergence study of the infinite corner problem (time 0.9) (a) front position using various mesh sizes (b) maximum distance of

the calculated interface from the analytical solution versus grid size.
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distance of the interpolated points to the analytical solution, which is discretized into 100 points. As shown

in Fig. 5(b), the error drops almost quadratically (�2.4(Dx)2) with the grid size Dx.

7.2. Growing of a circle and a sphere in an undercooled melt

The dynamical evolution away from an unstable steady-state was studied in [31,32]. It was found that

under conditions favoring rapid solidification in 2D, the radius of the growing circle satisfies R(t) � t. In

3D, the radius of the growing sphere satisfies RðtÞ /
ffiffi
t

p
. Using the presented numerical scheme, we simu-

lated the growth of an initial seed with radius 1 with initial temperature 0 located in the middle of the do-

main [�5,5]nsd, where the number of spatial dimensions nsd = 2 for the growing circle example and nsd = 3

for growing sphere. The rest of the domain is at initial temperature T0 = �0.5. The solid/liquid interface is

always at temperature Tm = 0 without surface tension or kinetic undercooling. A constant temperature

boundary condition T = �0.5 is applied at the boundary of the domain. Other parameters in the calculation
are ks = kl = 1, cs = cl = 1, L = 1 and q = 1. We use a 100 · 100 mesh for the 2D simulation and

100 · 100 · 100 mesh for the 3D simulation. Our results shown in Fig. 6 verify that after a ‘‘burn-in’’ per-

iod, the radius of the solidifying circle grows linearly with time in 2D and the radius of the solidifying

sphere in 3D grows linearly with the square root of time.

7.3. Crystal growth in an undercooled melt: effects of anisotropy and surface tension

This example was originally addressed in [1] using a front-tracking method and re-examined in [16] using
an implementation of the level set method. The material parameters defining the problem are ks = kl = 1,

cs = cl = 1, L = 1, q = 1 and Tm = 0. On the freezing interface C, we consider the classical Gibbs–Thomson

relation given in Eq. (5) with ec = eV = �0.002. The computational domain is taken as [�2,2] · [�2,2]. Insu-

lated boundary conditions are considered at all sides of the two-dimensional domain.

At time zero, we consider a small solid seed in the middle of the computational domain. Its geometry is

described as follows:
xðsÞ ¼ ðRþ P cosð8psÞÞ cosð2psÞ; ð33Þ
yðsÞ ¼ ðRþ P cosð8psÞÞ sinð2psÞ; ð34Þ
where R = 0.1 and P = 0.02. The initial temperature of the seed is taken as 0 and the initial temperature of

the undercooled melt as �0.5. In the implementation of this example, we considered three different finite
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Fig. 6. Radius of a solidifying circle and sphere in an undercooled melt: (a) growing circle; (b) growing sphere.
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Fig. 7. Crystal growth in the presence of surface tension: (a) mesh 100 · 100; (b) mesh 200 · 200; (c) mesh 400 · 400.
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element meshes (100 · 100, 200 · 200 and 400 · 400). These studies allow us to investigate and report on the

mesh-dependency of the results obtained with the present methodology.

For these calculations kCFL = 0.3. To accelerate our simulation, the time step size is adjusted automat-

ically according to the CFL condition thus the lines shown in Fig. 7 are not evenly separated with time. The

growth results shown in [1,16] are in increments of 0.04 up to a final time of 0.8. Notice in Fig. 7 that at time

0.8, a steady-state has been reached and as expected the area of the computed solid region is exactly half of
the total area of the domain. However, the area of the solid region at steady-state (time 0.8) is significantly

different for the morphologies with low mesh resolution 100 · 100 comparing with high mesh resolution

400 · 400 in both [1,16]. The reason is that when Dirichlet boundary condition is applied at the solid/liquid

interface, discretization error leads to high mesh-dependency. In our algorithm, we avoided applying

Dirichlet boundary conditions on the interface so that energy conservation is satisfied leading to mesh-

insensitive results.

We note that the grid refinement results shown in Fig. 7 compare well with those given in [16]. The mor-

phologies obtained in [1] using a front-tracking technique appear to have a much higher mesh-dependency
than the results reported here. The difference in published results [1,3,16,33] for this problem suggest that its

solution is highly sensitive to perturbations during the solution process and that the problem is indeed a

non-trivial one.

The above simulations were repeated but without the effects of surface tension, i.e., with ec = 0 and all

other conditions in Eq. (5) as before. Fig. 8 shows the results of this simulation for a mesh size 400 · 400.

Comparing with the results in Fig. 7, it is seen that the crystal as expected is growing in a much more unsta-

ble mode.

7.3.1. Sixfold symmetric growth

We also computed the solution to a crystal growth problem under anisotropy with sixfold symmetry

examined previously in [33]. The problem definition is similar to the earlier example.

At time zero, a small solid seed is put in the middle of the computational domain [�2,2] · [�2,2]. Its

geometry is described from Eqs. (33) and (34). The initial temperature of the seed is taken as 0 and the

initial temperature of the undercooled melt as �0.8. The kinematic undercooling coefficient is constant with

value ev = �0.001. The surface tension (curvature undercooling coefficient) is specified by the following

anisotropic model with sixfold symmetry:
ec ¼ �0.001 1.0þ 0:4
8

3
sin43ðh� p=2Þ � 1.0

� �� �
.

All other material properties are normalized as 1.
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In this example, the initial seed has a fourfold symmetry while ec has a sixfold symmetry. This difference

allows us to study how initial perturbations affect the crystal growth. Using a grid of 400 · 400 and

800 · 800 and at final time 0.036, we obtain the crystal interfaces shown in Fig. 9.

From Fig. 9, we can conclude that the primary dendrite arms are determined by the growth mechanism

(anisotropy), while the initial perturbations only affect the formation of secondary dendritic arms.

As pointed out in [33], the formed secondary dendritic arms are different for coarse and fine grid simu-

lations (see Fig. 9(a) and (b)), while the primary dendrite tips are growing with the same velocity for both
-2
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00·400; (b) mesh 800·800.



52 L. Tan, N. Zabaras / Journal of Computational Physics 211 (2006) 36–63
grids (they all reach the computational boundary at time about 0.036). However, note that in the work of

[33] using a front-tracking method with markers, the total time for the crystal to reach the computational

boundary varied from 0.035 with grid 800 · 800 to 0.045 with grid 400 · 400. The apparent improvement

provided by the present methodology may be due to its energy conserving nature.

7.4. Two-dimensional steady-state dendritic growth: comparison with solvability theory

Steady-state features of dendritic growth have been studied extensively using phase-field models [6,7] and

the level set method [17]. These calculations have been in good agreement with the predictions of micro-

scopic solvability theory. We will show here that an excellent agreement is also obtained using the devel-

oped energy conserving level set method. In the problem considered, the equilibrium temperature in the

freezing interface C incorporates the effects of anisotropy as
T � ¼ �d0ð1� 15� cos 4hÞj ð35Þ

with h the angle between the outward normal and the x-direction, d0 = 0.5 and � = 0.05. The initial liquid

temperature and boundary temperature (thus the undercooling considered) is D = 0.55. The remaining

material parameters are selected as ks = kl = 1, cs = cl = 1, L = 1 and q = 1. The obtained results are plotted

using a normalized velocity ~V ¼ qcd0V
k , a normalized position ~x ¼ x

d0
, ~y ¼ y

d0
, and dimensionless time ~t ¼ k

qcd2
0

t.
These dimensionless variables are also used in all of the following examples.

Our results shown in Fig. 10(a)–(d) obtained with a mesh of 800 · 800 compare fairly well with the
numerical results obtained using the phase-field method [6,7] and the level set method [17]. From the plot

of the computed temperature field in Fig. 10(b), we can observe that there is an undercooling at the dendrite

tips due to positive curvature, whereas at places with a negative curvature, the melt temperature is greater

than zero (the melting point). In these simulations, the interface velocity is extended away from the inter-

face to a distance of 3Dx on each side for solving the level set equation. At other places, the interface veloc-

ity is taken to be zero. From Fig. 10(d), we can see that the interface velocity achieves a maximum at the

dendrite tips. This value is about 0.016 for the results obtained using a mesh of 400 · 400 and 0.017 for the

results using a mesh of 800 · 800. According to the solvability theory, the steady-state velocity at the den-
drite tips is 0.017 [17].

The dendrite tip velocity is found to be very sensitive to the degree of undercooling. Using a slightly

higher undercooling of 0.65, the steady-state dendrite tip velocity increases to about 0.047 as shown in

Fig. 11. For the results in this figure, we have increased the computational domain to 1200 · 1200 using

a mesh of 600 · 600. In this figure, we can find that the dendrite tip velocity settles to a value 0.017 at

dimensionless time 22,000. In the earlier reported case of a domain of 800 · 800, the thermal boundary

layer eventually interacts with the system boundary and the asymptotic nature of the solution is lost.

Finally, in order to demonstrate the ability of the present method to enforce weakly the interface tem-
perature condition, we also documented the equilibrium temperature at the dendrite tips for this example

with undercooling 0.55 (Fig. 12).

While as discussed in Remark 2, an iterative process may be needed in general to enforce the interface

temperature condition, in this example an explicit non-iterative process was sufficient. The equilibrium tem-

perature falls in the range of [�0.042,�0.002], which only varies about 0.04/0.55 = 7.2% of the total und-

ercooling. This small variation of the equilibrium temperature did not require the use of an iterative process

such as the one shown in Fig. 3.

It has been pointed out in [17] that phase-field asymptotics for unequal solid/liquid diffusivities lead to
computationally inconvenient forms and require extra grid resolution. The level set method by its nature

avoids this difficulty. In order to demonstrate the ability of the present methodology to model unequal dif-

fusivities, we calculated the same 2D crystal growth case using various diffusivities as shown in Fig. 13.

From this figure, we can see that an increase of the liquid diffusivity tends to make the dendrite tips sharper,
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while an increase of the solid diffusivity would only make the dendrite tips a little bit fatter. A change of the

liquid diffusivity was shown to affect the growth pattern more than a change of the solid diffusivity.

7.4.1. Off-axis solidification growth

In order to demonstrate that the presented algorithm works properly for off-axis growth, we recomputed

the above example with a rotated surface tension anisotropy as follows:

800
T � ¼ �d0 1� 15� cos 4 hþ p
4

� 	� 	� 	
j. ð36Þ
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The temperature field (at time about 10,000) obtained by the original anisotropy and rotated anisotropy are

shown in Fig. 14(a) and (b). From Fig. 14(a) and (b), we can conclude that the crystal growth is not affected

by the grid orientation.

7.4.2. Formation of secondary dendrites

The formation of secondary dendrites is of great interest to many researchers, e.g. the mechanical

properties are related with secondary dendrite arm spacing. In the solvability problem examined earlier
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as shown in Fig. 15(b). Calculations with such increased computational domain are given in [7,14], how-

ever, only in the adaptive finite element calculations of [14] secondary arms are predicted.
7.5. Three-dimensional dendritic growth

7.5.1. High-undercooling case

We herein examine the 3D case of the earlier solvability example using a mesh of 60 · 60 · 60 with an

undercooling of 0.55. To incorporate anisotropy in this 3D solidification growth example, we consider the

following equilibrium temperature [4]:
T � ¼ �d0ð1� �ð4ðn41 þ n42 þ n43Þ � 3ÞÞj on C; ð37Þ
where d0 = 0.5, � = 0.05 and n1, n2, n3 are the components of the normal unit vector along the x,y,z axes,

respectively, calculated at each point on the freezing interface. The whole domain considered is

[�400,+400]3. Using symmetry, only 1/8 of the whole domain is calculated. Using an IBM T41 with a

1.7 GHz CPU and 512 MB memory, the calculation time for the crystal to reach the state shown in
Fig. 16 is about 10 h. In this case, the undercooling is relatively large, so that the temperature field extends

spatially as shown in Fig. 16.
7.5.2. Low-undercooling

It was observed that at low-undercoolings, the length scale to model the underlying transport processes

is several orders of magnitude the tip radius [20]. However, the mesh step size Dx should be based on the tip

radius in order to model the dendrite shape. This requires a very fine 3D grid, and substantially increases

the computational difficulty for such problems. The following case with an undercooling of 0.05 is first pre-
sented in [20] to illustrate the computational power of the so called �multiscale random-walk algorithm� to
address previously computationally unreachable range of low-undercoolings. Other parameters considered

are the following [20]:
T � ¼ �d0ð1� 3�Þ½1� 4�ðn41 þ n42 þ n43Þ=ð1� 3�Þ�j on C; ð38Þ
2 0 0 0 - 1 0 0 0 0 1 0 0 0 2 0 0 0 - 2 0 0 0

1 0 0 0

0 1 0 0 0

2 0 0 0 a b F i g . 1 5 . F r o n t p o s i t i o n e v o l u t i o n f o r t h e s o l v a b i l i t y p r o b l e m u s i n g a n e n l a r g e d d o m a i n a n d t w o - d i � e r e n t u n d e r c o o l i n g s : ( a ) D = 0 6 5 5 ; ( b ) D = 0 6 8 0 6 5 6 L . T a n , N . Z a b a r a s / J o u r n a l o f C o m p u t a t i o n a l P h y s i c s 2 1 1 ( 2 0 0 6 ) 3 6 … 6 3



Fig. 16. Temperature field and crystal shape at time t = 105 for 3D crystal growth at an undercooling D = 0.55: (a) temperature field;

(b) crystal shape.
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where d0 = 1 and � = 0.025. Again using symmetry, we take a computation domain of [0,+20,000]3 with
mesh 1203 using 2 V1 nodes in the Cornell CTC center (with 4 · 500 MHz CPU on each node). Domain

decomposition using 8 domains (processes) is used in this calculation.

For this low-undercooling case, the interface velocity is very small compared to the high-undercooling

case. A smaller CFL coefficient of kCFL = 0.1 is thus used in this case to reduce the computation time step.

The temperature field on the first process and the crystal shape is shown in Fig. 17 with domain

[0,+10,000]3 using a mesh of 603. Since the other 7 processes provide only little additional information

on temperature, the results of those processes are not shown here. The dimensionless tip velocity and tip

radius as a function of time are shown in Fig. 18. These results are very close to those reported in [20].
Fig. 17. Temperature field and crystal shape at time t = 2.4 · 108 for 3D crystal growth at an undercooling D = 0.05.
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Fig. 19m Temperature field and crystal shape at timet= 320 for 3D crystal growth at an undercoolingD58L. Tan, N. Zabaras / Journal of Computational Physics 211 (2006) 36–63
The steady-state tip velocity and dendrite tip radius agree well with values reported in [20]. This demon-

strates that the present methodology can successfully be applied to undercoolings as low as 0.05 thus bridg-

ing the disparity of length scales for modelling the tip radius and the thermal boundary layer. This ability is

important since there is direct experimental relevance in this order of undercoolings [20].

We also considered the equilibrium condition in Eq. (38) but with an undercooling of 0.45 and � = 0.04.
This case was examined earlier in [34]. The obtained results in Fig. 19 show that the predicted dendrite

shapes compare fairly well with those reported in [34] using the phase-field method.
growth at an undercooling= 0.45. The predicted 3Dcrystal growth compares well with that obtained in[34]using the phase-field method: (a) temperature field; (b) crystal shape.
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7.6. Two-dimensional crystal growth with convection

Beckermann et al. [26] presented the first calculations of dendritic growth in the presence of convection

with a diffused-interface using the phase-field method. An implementation of dendritic growth with fluid

flow using a front-tracking method is given in [4]. The 2D case studied here is from [26]. The initial tem-
perature is Tin = �0.55 and the inlet velocity Vinlet = 0.035 with Pr = 23.1. The remaining conditions are

the same as those reported in the 2D solvability theory case.

The computed results are summarized in Fig. 20. The dendrite �tilting� shown in Fig. 20(a) is due to the

fact that the heat fluxes are higher on the upstream side than on the downstream side. The growth patterns

predicted here compare fairly well with those in [26]. As shown in Fig. 20(a), we only calculated the solution

on the right half of the domain [0,400] · [�400,400] using a mesh of 200 · 400. The left half is mirrored to
Fig. 20. Two-dimensional crystal growth with convection: (a) temperature field; (b) 2D growth tip velocity; (c) flow through

perpendicular tip; (d) steamline contours.
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show the results. Domain decomposition using 8 domains is also used in this calculation. The actual grid in

each processor includes two rows of additional grid points in each outer surface to facilitate the commu-

nication of data at the boundary. This calculation was performed in the Cornell CTC supercomputer using

4 VII nodes (2 · 2.4 GHz CPU on each node) within about 5 h. A schematic of the typical dendrite growth

in the presence of fluid flow is shown in Fig. 20(a). The dimensionless velocity at the tips is shown in Fig.
20(b).

The flow passing through the perpendicular tip is shown in Fig. 20(c), while the streamline contours are

shown in Fig. 20(d). As shown in Fig. 20(c), an artificial �mushy zone� with width 2Dx is assumed. We use a

permeability constant K0 = 10�5 so that the velocity is almost zero within this zone, as if the no-slip

condition is applied at the boundary between the mushy zone and the melt region. Since the half-width

of the mushy zone is only Dx, the no-slip condition is applied on the position / = Dx. In our calculation,

the mushy zone is identified using / 2 [�Dx,+Dx]. One can also change position of the artificial mushy

zone according to the signed distance variable /, e.g. / 2 [�Dx, 0] or / 2 [�2Dx, 0], so that the no-slip con-
dition can be exactly applied at / = 0. Comparing with the phase-field method [26] where special modelling

of the interfacial stress term was used, it can be seen that the present method does not require an asymptotic

analysis. Moreover, since the present method is a whole-domain method using volume-averaging, it is easy

to implement and accurate when coupling heat transfer with fluid flow [19]. As it has been pointed out in

[19], the volume-averaging model with stabilized FEM formulation converges nearly quadratically. Other

methods such as the fractional step method do not show such rates of convergence.

Remark 5. Treating the diffused-interface as a porous medium [26] with the Kozeny–Carman approxi-

mation for the permeability is of no physical significance in the present calculations. It is simply a numerical
Fig. 21. Crystal shape and temperature field for 3D growth in the presence of fluid flow: (a) D = 0.45, � = 0.04, Vinlet = 1, Pr = 23.1 at

time t = 163; (b) D = 0.15, � = 0.3, Vinlet = 0.002, Pr = 1.0 at time t = 1.89 · 107.
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tool for applying the no-slip boundary condition on the growing crystal using a fixed-grid. A variant

viscosity in the diffused-interface can be applied as well [27]. In our calculations, we found that both of these

methods lead to nearly identical results with velocity of very small magnitude within the mushy zone.
7.7. Three-dimensional crystal growth with convection

Two 3D examples are examined with high- and low-undercooling. These examples have been examined

earlier in [34,4], respectively.

For the high-undercooling case, the undercooling is 0.45 and the inlet velocity is specified as 1.0. The

equilibrium temperature on the interface is given from Eq. (38) where d0 = 1 and � = 0.04. The computa-

tional domain is taken as [0,200] · [0,200] · [�200,200] with mesh size 60 · 60 · 120.
For the low-undercooling case, the undercooling is 0.15, and the inlet velocity is 0.002. The equilibrium

temperature on the interface is specified by Eq. (37) where d0 = 1 and � = 0.3. The computational domain is

taken as [0,12500] · [0,12500] · [�12500,12500] with mesh size 60 · 60 · 120.

The temperature field and crystal shape for both cases are shown in Fig. 21. The computed 3D growth

pattern is similar to the 2D growth pattern except that there are four perpendicular arms in 3D. Comparing

Fig. 22(a) and (b), one can also observe that the crystal growth velocity is greatly affected by the degree of

undercooling. The dendrite tip velocity differs by an order of about 102 for the two undercoolings consid-

ered. These results compare very well with those reported in [4,34].
8. Conclusions

A method combining features of front-tracking and fixed-domain methods is presented to model

dendritic solidification of pure materials. Some of the key features of the presented method include (a)

the use of a fixed-grid simulation for heat and momentum transfer, (b) energy conservation by avoiding

the explicit application of temperature condition on the freezing front, (c) avoiding the direct application
of the no-slip condition on the freezing front, (d) symmetric discretization of the heat equation thus avoid-

ing the problems addressed in [17] and (e) automatic time step selection. The method is substantially simpler

to implement relative to front-tracking or phase-field models.
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The numerical investigations shown here have demonstrated that the present method can serve as an

accurate and computationally effective alternative tool for modelling dendritic solidification. Current work

is in progress to apply this methodology to alloy solidification.
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